
Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1098-1104 (2011)

1098

A New Algorithm to Detect the Non-Termination
of Triggers in Active Databases

Dr. R.Manicka chezian

Department of Computer Science, N G M College (Autonomous), Pollachi, Coimbatore - 642001, India
Email: chezian_r@yahoo.co.in

Dr.T.Devi
Department of Computer Science & Engineering., Bharathiar University, Coimbatore � 641 046, India

Email: tdevi5@gmail.com

--ABSTRACT--
Active Databases are a combination of traditional static databases and active rules, meant to be automated mechanisms to
maintain integrity and facilitate in providing database functionalities. Active database systems can react to the occurrence of
some predefined events automatically. In many applications, active rules or triggers may interact in complex and sometimes
unpredictable ways, thus possibly yielding infinite rule executions by triggering each other indefinitely causing non-
termination. The termination of active rules is an unpredictable problem, except when rule languages with very limited
number of rules are used. This paper presents new algorithms for detecting termination / non-termination of rule execution
using triggering graph and complex triggering graph, and these algorithms do not pose any limitation on the number of rules.

Key words: - Active Rules, Active Databases, Non-Termination, Termination, Triggers

Date of Submission: February 24, 2011 Date Revised: July 19, 2011 Date of Acceptance: August 2, 2011

1. Introduction

The processing of active rules (in commercial databases
such as Oracle and Sybase called as triggers) is
characterized by two important properties: termination and
confluence. Confluence property of rules decides whether
the execution order of non-prioritized rules make any
difference in the final database state. Confluence for active
database rules is a particularly difficult problem because,
in addition to the standard problems associated with
confluence, the interaction between rule triggering and rule
priorities should also be counted [14],[15]. Rule
activations in active databases can �cascade�, i.e. the
execution of an active rule can cause a change in the
database state that causes another rule to be executed; the
resulting change can then cause the activation of a third
rule and so on. Ensuring that such cascaded rule activations
do not go on forever therefore becomes of fundamental
importance. Analyses that examine a set of active rules to
determine whether rule activations will terminate are called
termination analysis [17],[10],[4],[6]. The processing of a
set of active rules terminates if, given any initial active
database state, the execution of the rules does not continue
indefinitely. Researchers in the past have used three ways
to analyze this non-termination problem.. First, using static
analysis, by giving a priority, the non termination is
impossible for a particular rule set [16]. This task is made
difficult, due to the complex interactions which can occur
among rules. The second approach, is to impose some

fixed limit upon the number of rules or triggers which can
be executed in a triggering sequence - such a method is
adopted by commercial database systems such as Oracle
and Sybase. While easy to implement, it has the defect that
valid rule execution sequences may exceed this limit and
be prematurely halted and aborted, an approach unsuitable
for applications where correctness and performance is
paramount, such as mission critical systems and even
banking systems. A third approach involves the imposition
of syntactic restrictions on the rule set to ensure that rule
execution always terminates. The difficulties of defining
such criteria are recognized by the current SQL3 standard
for triggers which does not attempt to prescribe methods
for ensuring termination.

2. Related Work
The introduction of the active rules into database
management systems produced new problems. Among
these problems, non-termination is the one of the main
problems. A rule set is guaranteed to terminate if, for any
database state and initial modification, rule processing
cannot continue forever. Thus, it is necessary to take
measures to prevent against an infinite execution of the
system. Several researches have started to try to give a
solution to this problem. Aiken et al., (1995) are the first to
introduce the notion of Triggering Graph (TG). They
showed that a triggering graph without cycles determines
and guarantees the termination of a set of active rules in an
active database system [1]. Lee and Ling (1998) propose a

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1098-1104 (2011)

1099

path technique for reducing the graph TG. The method
considers together the conditions of long triggering
sequences called activation formulas. It is necessary to
guarantee that the execution of rules outside the triggering
sequence cannot unpredictably change the database state.
Hence, only non-updatable predicates can be included in
the activation formula [13]. This condition severely limits
the applicability of the technique. Baralis and Widom
(2000) try to improve the previous methods. Their
approach is based on a �propagation algorithm� which uses
an extended relational algebra to accurately determine
when the action of one rule can affect the condition of
another. The termination analysis is made by building the
graph called Activation Graph (AG) [4]. Belbachir H and
Ougouti N.S. (2006) present a new static approach for
termination analysis of the active rules. It consists of the
detection of cycles in a graph says dependences graph.
This is built by taking into account the triggering of rules
by other rules, influence of rule�s actions on triggered
rule�s conditions and satisfiability of rule�s conditions [5].
The principal work on dynamic analysis is done by
E.Baralis et al., (1998). They performed the checking of
active rules at run time to see whether a repeating database
state has occurred in a history of previous states [7]. James
Bailey et al.,(2000) described the new approach based on a
dynamic upper limit to the number of rule firings. This
limit reflects knowledge about past rule behavior on the
database and provides a more accurate measure for when
the data base management system (DBMS) should
terminate rule execution [11]. Baba-hamed .L and
Belbachir .H (2005) propose a method of termination
analysis of active rules based on Petri Nets (PN) called as
Extended Coloured Petri Net (ECPN) and give an object
oriented representation to implement it [3]. Latifa Baba-
Hamed (2008) has done a comparative study of the above
method with the most known methods available in the
literature for detecting non-termination. He claimed that
their approach is better than the previous methods because
ECPN is a good model for modeling, analyzing and
simulation of active database systems and it does not
perform a simple analysis of cyclic paths but analyzed each
element of the graph to determine if the rule triggering in a
cyclic path finishes or not [12].

3. Triggering Graph
Many of the works to date on termination analysis for
active databases, triggering graph is used to check the set
of rules is acyclic. One of the first works in this field is that
of Aiken et al. (1995) who are the first to introduce the
concept of triggering graph [1]. According to them, if the
triggering graph is acyclic, the termination of the system of
rules is guaranteed. Otherwise, the termination of the rules
is not guaranteed. Non-termination occurs frequently when
a set of rules or triggers available in a database system.
Normally, rules are explained in the form of Event-

Condition-Action (ECA) rules. For example, consider the
following two rules.

Rule R1
 Event: X1 � decrease_overdraft(Y1)

 Condition: 5000 < X1.capacity

 Action: X1 � decrease_capacity(500)

Rule R2

 Event: X2 � decrease_capacity(Y2)

 Condition: 200 < X2.overdraft

 Action: X2 � decrease_overdraft(40)

The above two rules can be illustrated as in the Fig. 1 as a
triggering graph. This shows there is a possibility of non-
termination.

Figure 1 Triggering Graph

4. New Algorithm for Checking Non- Termination
Termination of rules in active databases is an important
research issue for which a number of papers have been
published [1],[2],[3],[5],[9],[10],[11],[17],[13],[8]. The
processing of a set of active rules terminates if, given any
initial active database state, the execution of the rules does
not continue indefinitely. Termination of triggers in an
active database is an undecidable problem. In most of the
previous works, for finding the non termination, only
triggering graph is considered [1],[2],[18],[13],[5]. In a
triggering graph, whenever a cyclic graph occurs, it shows
that the possibility of non-termination. Active rules may
interact in complex and sometimes unpredictable ways,
thus possibly yielding infinite rule executions by triggering
each other indefinitely. In all the previous works, the
researchers have analyzed the problem by taking a simple
graph or by considering the single cyclic graph
[1],[2],[18],[5], In the proposed approach, a complex
graph having many cyclic graphs is considered. Consider
six rules R1, R2, R3, R4, R5 and R6. A graph is built by
means of a syntactic analysis of rules. The nodes of the
graph are rules. Two rules R1 and R2 are connected by a
directed edge from R1 towards R2 if the action of R1
contains a triggering event of R2. The presence of cycles in
such a graph means a risk of non-termination of the set of
rules. The absence of cycles in the triggering graph
guarantees the termination of the set of rules. This is
shown in the following triggering graph as Fig. 2.

 R1 R2

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1098-1104 (2011)

1100

 Figure 2 Triggering Graph having Six Rules

 This implies that these rules may yield termination.
The above two situations i.e., triggering graph with and
without cycles are explained in the following new
approach as an algorithm. The algorithm implemented for
Fig. 2 for checking non-termination when two nodes are
involved in forming a cyclic graph in Java�s JDK1.3
compiler is shown in Appendix-1.

 Step 1: Check whether all the rules belong to the
 same domain
Step 2: Draw a triggering graph showing the
 Activities of rules in a rule based system.
Step 3: Find out all the in-links and out-links for all
 the rules (or) nodes.
Step 4: If there is a same rule come as an in-link and
 out-links for a node, there is a possibility of
 non-termination (or) a cyclic graph and then go
 to step 5. Otherwise, the rules are terminated and
 then go to step 7.
Step 5: If there is a non-termination, assign a highest
 priority number for a rule that has to be fired first.
 If the rule execution generates events triggering
 higher priority rules, the rule should be
 suspended and resumed only when there will be
 no more higher priority triggered rules. Then
 assign next highest priority number to the next
 possible rule to get fired.
Step 6: After giving the priority numbers, if there is a
 cyclic graph, go to step 4. Otherwise go to next
 step.
Step 7: Exit rule processing and resume the
 transaction.

 Algorithm1: Algorithm for checking non-termination
when two nodes involved in forming a cyclic graph

5. Triggering Graph having More Than Two
Rules forming a Cyclic Graph

Consider the triggering rules R1, R2, R3, R4, R5, R6 and
R7. The interaction among the rules is shown in Fig. 3.
When any two nodes are taken, they are not forming a
cyclic graph. By using the algorithm 1, if the checking of
termination is done, it gives there is a termination. But by
seeing the triggering graph shown in Fig. 3, it is forming a
cyclic graph. So, the algorithm 1 is not valid if more than
two rules are forming a cyclic graph. The algorithm has to
be changed in the case of more than two rules give a non-
termination.

Figure 3 Triggering Graph having cyclic graphs

 The cyclic graphs that are considered in the Fig. 2 are
all involved with only two nodes. The algorithm 1 is using
the in-links and out-links of a node. When in-link and out-
link of a node is same, then there is a possibility of a non-
termination. So, the algorithm1 may be suitable for a
triggering graph forming a cyclic graph using two nodes.
When a triggering graph is having a cyclic graph which is
attained by three nodes or above, the algorithm 1 is not
suitable since it will not reveal the possibility of a cyclic
graph. So, the above proposed algorithm has to be
modified to find a cyclic graph having three or more nodes.
This approach is explained in algorithm 2.

 R1 R2

 R4 R3

 R6 R5 R7

 R1 R2

 R3 R4

 R6 R5

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1098-1104 (2011)

1101

 Step 1: Check whether all the rules R1, R2, R3�
 .. Rn Є D where D is a domain

 Step 2: Draw a triggering graph showing the
 Activities of rules R1, R2, R3 .. Rn.

 Step 3: Find out all the in-links and out-links of
 R1,R2, R3 � Rn

 Step 4: Let in-link (Ri) denote the in-links of rule Ri
 and out-link(Ri) denote the out- links of rule
 Ri.

 For rule Ri, let Sj denote the successor nodes,
 j = 1,2,3, � m.
 begin
 For Rule Ri, i=1, 2, 3,� n
 For every Sj, j=1, 2, 3, � m
 Form an ordered pair
 (in-link (Sj), out-link (Sj));
 Let this be (Inj, Outj);
 End;
 End;
 Termination = true;
 For j = 1,2,3, �.m
 For k = 1,2,3, � m
 If Inj = outk then termination= false;
 End;
 End;
 If termination = true then
 print �Termination occurs�
 else print �Termination is not guaranteed�;
 End;

 Step 5: Assign a highest priority number for a
 rule that has to be fired first. Then
 assign next highest priority number to
 the next possible rule to get fired and
 so on.

 Step 6: After giving the priority numbers, if there
 is a cyclic graph, go to step 4. Otherwise
 go to next step.

 Step 7: Exit rule processing and resume the
 transaction.

 Algorithm 2: Algorithm for checking non-termination
when more than two nodes are involved in forming
a cyclic graph

 The algorithm 2 is very much useful when a triggering
graph is forming a cyclic graph in the case of more than

two nodes are forming cyclic graphs. This can work for
any number of nodes forming a cyclic graph in a triggering
graph. The algorithm implemented for Fig. 3 in Java�s
JDK1.3 compiler is shown in Appendix-2.

6. Conclusions
Almost all of the work to date on termination analysis for
active databases uses a simple triggering graph having two
or three nodes / rules. In this work, a complex graph is
considered to analyze termination of a set of active rules.
Two different algorithms are given in this paper for
checking non-termination. The first algorithm is
considered for the triggering graph when two nodes are
forming a cyclic graph. The second algorithm deals with
the triggering graph when more than two nodes are
involved in forming a cyclic graph. This work is
implemented using Java�s JDK1.3 compiler. So, these new
algorithms are used to determine the termination/non-
termination of rules for any number of nodes in a
complex triggering graph. This work can be easily
extended to check the non-termination of active rules or
triggers using Petri nets approach.

References

[1] Aiken. A, Joseph M. Hellerstein and Jennifer Widon
�Static Analysis Techniques for predicting the
Behavior of Active Database Rules�, ACM
Transactions on Database Systems, Vol. 20, No.1,
1995, 3-41.

[2] Alain Couchot �Termination Analysis of Active Rules
with Priorities�, Lecture Notes in Computer Science,
Database and Expert Systems Applications, Springer
Berlin / Heidelberg, Vol. 2736/2003, 846 � 855.

[3] Baba-Hameed. L and Belbachir.H �Priority of Active
Rules and Termination Analysis� Journal of
Theoretical and Applied Information Technology,
2005, 11 � 19.

[4] Baralis E., and Widom J., �Better Static Rules
Analysis for Active Database Systems�, ACM
Transactions on Database Systems (TODS) Vol. 25,
No.3, 2000, 269-332.

[5] Belbachir. H and Ougouti. N.S., �A New Approach for
Termination Analysis of Active Rules� Journal of
Applied Sciences Vol. 6(3), 2006, 657 � 661.

[6] Danilo Montesi, Elisa Bertino, Maria Bagnato and
Peter Dearnley �Rules Termination Analysis
Investigating the Interaction between Transactions and
Triggers�, Proceedings of the International Database
Engineering and Applications Symposium
(IDEAS’02), 2002, 285 � 294.

[7] Elena Baralis, Stefano Ceri and Stefano Paraboschi
�Compile-Time and Runtime Analysis of Active

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1098-1104 (2011)

1102

Behaviors� IEEE Transactions on Knowledge and
Data Engineering, Vol. 10, No.3, 1998, 353 � 370.

[8] Eun-Hye CHOI, Tatsuhiro TSUCHIYA, Tohru
KIKUNO �Model Checking Active Database Rules”,
Programming Science Technical Report, AIST CVS,
Osaka University, Japan, 2006, 1 � 16.

[9] Indrakshi Ray and Indrajit Ray �Detecting
Termination of Active Database Rules Using
Symbolic Model Checking�, Proceedings of the 5th
Ease European Conference on Advances in Databases
and Information Systems, 2001, 266-279.

[10] James Alexander Bailey �On the Foundations of
Termination Analysis of Active Database Rules�,
Ph.D., Thesis, University of Melbourne, Australia,
1997.

[11] James Bailey, Alexandra Poulovassilis, Peter Newson
�A Dynamic Approach to Termination Analysis for
Active Database Rules�, Proceedings of 1st
International Conference on Computational Logic
(CL2000), LNCS 1861, 2000, 1106 � 1120.

[12] Latifa Baba-Hameed, �Termination Analysis
Approach: A Comparative Study� 3rd International
Conference on Information and Communication
Technologies: From Theory to Applications (ICTTA
2008) Damascus, Syria, Vol.7, Issue 11, 2008, 1-6.

[13] Lee S.Y. and Ling T.W. �A Path Removing Technique
for detecting Trigger Termination� Proceedings of 6th
EDBT, Valencia, 1998, 341 � 355.

[14] Manicka chezian. R and Devi. T, �Confluence
Property Determination using Associative Law�,
International Journal of Engineering Research and
Industrial Applications, Vol. 2, No. II, 2009, 349-358.

[15] Manicka chezian. R and Devi. T, �Confluence in
Active Data Base System�, Proceedings of the
International Conference on Digital Factory – ICDF
2008, Coimbatore Institute of Technology,
Coimbatore, India, 2008, 2010-2015 (Best Paper
Award).

[16] Sara Comai and Letizia Tanca �Termination and
Confluence by Rule Prioritization� IEEE Transactions
on Knowledge and Data Engineering, Vol. 15, No.2,
2003, 257 � 270.

[17] Saumya Debray and Timothy Hicky �Constraint-
Based Termination Analysis for Cyclic Active
Database Rules�, Lecture Notes in Computer Science,
Computational Logic – CL 2000, Springer Berlin /
Heidelberg, Vol.1861/2000, 1121 � 1136.

[18] Susan D.Urban, Michael K.Tschudi, Suzanne
W.Dietrich and Anton P.Karadmice �Active Rule
Termination Analysis: An implementation and
Evaluation of the Refined Triggering Graph Method�

[19] Journal of Intelligent Information Systems, Vol. 12,
No. 1, 1999, 27 -60.

Authors Biography

Dr. R.Manicka chezian received his
M.Sc., degree in Applied Science from
P.S.G College of Technology, Coimbatore,
India in 1987. He completed his M.S.
degree in Software Systems from Birla
Institute of Technology and Science,

Pilani, Rajasthan, India and Ph D degree in Computer
Science from School of Computer Science and
Engineering, Bharathiar University, Coimbatore, India. He
served as a Faculty of Maths and Computer Applications at
P.S.G College of Technology, Coimbatore from 1987 to
1989. Presently, he has been working as an Associate
Professor in N G M College (Autonomous), Pollachi under
Bharathiar University, Coimbatore, India since 1989. His
research focuses on Network Databases, Data Mining,
Distributed Computing, Mobile Computing, Real Time
Systems and Bio-Informatics.

Dr. T.Devi received the Master of Computer
Applications from P.S.G. College of
Technology, Coimbatore in 1987 and PhD
from the University of Warwick, United
Kingdom in 1998. She is presently Heading

Department of Computer Applications, School of
Computer Science and Engineering, Bharathiar University,
Coimbatore. She has also served as an Associate Professor
in Indian Institute of Foreign Trade, New Delhi from 2004
to 2008. Her current research centered on the Software
Engineering, Product Introduction, Technical Process
Management, Concurrent Engineering, Distributed
Computing and Data Mining. She has published more than
twelve research papers in International / National Journals.
She has contributed more than 75 papers in various
National / International / Conference / Seminars /
Symposia.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1098-1104 (2011)

1103

LOOP BETWEEN TWO NODES
 Enter the no of nodes:
6
Enter the node: 1
R1
Enter the no of in-links for R1:
1
Enter the in-links for R1:
R4
Enter the no of out-links for R1:
1
Enter the out-links for R1:
R2
Starting time: 1.310162317453e12
End time =1.310162317453e12
Elapsed time =0.0
Enter the node: 2
R2
Enter the no of in-links for R2:
4
Enter the in-links for R2:
R1, R3, R4, R5
Enter the no of out-links for R2:
2
Enter the out�links for R2:
R3, R4
THERE IS A LOOP BETWEEN R3 AND R2
A NON TERMINATION OCCURS.
Starting time: 1.310162909625e12
End time =1.310162909625e12
Elapsed time =0.0
THERE IS A LOOP BETWEEN R4 AND R2
A NON TERMINATION OCCURS.
Starting time: 1.310162909625e12
End time =1.310162909625e12
Elapsed time =0.0
Enter the node: 3
R3
Enter the no of in-links for R3:
4
Enter the in-links for R3:
R2, R4, R5, R6
Enter the no of out-links for R3:
3
Enter the out-links for R3:
R2, R4, R5
THERE IS A LOOP BETWEEN R2 AND R3
A NON TERMINATION OCCURS.
Starting time: 1.310163118718e12
End time =1.310163118718e12
Elapsed time =0.0
THERE IS A LOOP BETWEEN R5 AND R3
A NON TERMINATION OCCURS.
Starting time: 1.310163118718e12
End time =1.310163118718e12

Elapsed time =0.0
Enter the node: 4
R4
Enter the no of in-links for R4:
3
Enter the in-links for R4:
R2, R3, R5
Enter the no of out-links for R4:
4
Enter the out-links for R4:
R1, R2, R3, R5
THERE IS A LOOP BETWEEN R3 AND R4
A NON TERMINATION OCCURS
Starting time: 1.310163563765e12
End time =1.310163563765e12
Elapsed time =0.0
THERE IS A LOOP BETWEEN R5 AND R4
A NON TERMINATION OCCURS.
Starting time: 1.310163563765e12
End time =1.310163563765e12
Elapsed time =0.0
Enter the node: 5
R5
Enter the no of in-links for R5:
2
Enter the in-links for R5:
R3, R4
Enter the no of out-links for R5:
4
Enter the out-links for R5:
R2, R3, R4, R6
THERE IS A LOOP BETWEEN R3 AND R5
A NON TERMINATION OCCURS
Starting time: 1.310163563765e12
End time =1.310163563765e12
Elapsed time =0.0
THERE IS A LOOP BETWEEN R4 AND R5
A NON TERMINATION OCCURS.
Starting time: 1.310163563765e12
End time =1.310163563765e12
Elapsed time =0.0
Enter the node: 6
R6
Enter the no of in-links for R6:
1
Enter the in-links for R6:
R5
Enter the no of out-links for R6:
1
Enter the out-links for R6:
R3
THERE IS A LOOP BETWEEN R3 AND R6
A NON TERMINATION OCCURS.
Starting time: 1.310163563765e12
End time =1.310163563765e12
Elapsed time =0.0

 Appendix-1

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 02, Pages:1098-1104 (2011)

1104

MULTIPLE LOOP DETECTION

Enter the no of nodes:
7
Enter the nodes one by one:
R1, R2, R3, R4, R5, R6, R7
Enter the no.of.in links for R1:
2
Enter the in-links for R1:
R3, R4
Enter the no. of out - links for R1:
1
Enter the out �links for R1:
R2

Enter the no.of.in links for R2:
1
Enter the in-links for R2:
R1
Enter the no of out - links for R2:
1
Enter the out - links for R2:
R3

Enter the no.of.in links for R3:
1
Enter the in-links for R3:
R2
Enter the no of out -links for R3:
5
Enter the out - links for R3:
R1, R4, R5, R6, R7

Enter the no.of.in links for R4:
1
Enter the IN-Links for R4:
R3
Enter the no of out links for R4:
4
Enter the out - links for R4:
R1, R5, R6, R7

Enter the no.of.in - links for R5:
2
Enter the in-links for R5:
R3, R4
Enter the no. of out - links for R5:
1
Enter the out - links for R5:
R6

Enter the no.of.in links for R6:
3
Enter the in-links for R6:

R3, R4, R5
Enter the no of out links for R6:
1
Enter the out - links for R6:
R7

Enter the no.of.in links for R7:
3
Enter the in-links for R7:
R3, R4, R6
Enter the no. of. out Links for R7:
0

Start Time =1.310250671156E12

THERE IS A LOOP AMONG NODES
R1 R2 R3
A NON TERMINATION OCCURS.

End time =1.310250671171E12
Elapsed Time =15.0
THERE IS A LOOP AMONG NODES
R1 R2 R3 R4
A NON TERMINATION OCCURS.

End Time =1.310250671171E12
Elapsed Time =15.0

Appendix-2

